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Abstract

This paper proposes an interaction reasoning network
for modelling spatio-temporal relationships between hands
and objects in egocentric video. The proposed interaction
unit utilises a Transformer-style module to reason about
each acting hand, and its spatio-temporal relations to the
other hand as well as objects being interacted with. We
show that modelling two-handed interactions are critical
for action recognition in egocentric video, and demonstrate
that by using positionally-encoded trajectories, the network
can better recognise observed interactions. We train and
evaluate our proposed network on large-scale egocentric
EPIC-KITCHENS-100 and crowd-sourced Something-Else
datasets, with an ablation study to showcase our proposal.

1. Introduction
Different from general actions (e.g. jumping), object

interactions involve actors influencing objects (e.g. play-
ing an instrument or kicking a ball). Of particular interest
to this work is hand-object interactions (HOI) which fea-
ture regularly in the activities of daily living. HOIs in-
clude one-handed (e.g. “open drawer”) as well as two-
handed interactions (e.g. “open bottle”), and many inter-
actions include tools that extend our hands’ abilities (e.g.
cutting a vegetable requires a knife). However, most video
understanding methods aim to recognise both actions and
interactions alike as general video datasets involve a mix
of classes [3, 16]. Recently, a handful of large-scale
datasets [15, 5, 6] that focus on HOIs have fueled works
that specifically reason about interactions.

Recent progresses in interaction reasoning have been
driven by the success of object detectors, e.g. [26]. Due
to the datasets used, previous works [30, 13, 24, 1] detect
the person in the middle frame of the video or all the ob-
jects that appear in the video. This means that trajectories
of interactions are not explicitly emphasised.
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Figure 1. Illustration of Spatio-Temporal HOI reasoning for the
action of stirring food in the pan. Both hands play critical roles.
The left hand (HL, in blue) steadies the pan, which we refer to as
the left object (OL, in yellow) given its direct interaction with the
left hand. The right hand (HR, in red) holds the wooden spoon
(OR, in green). While HL, OL are steady over time, they are
action critical as the red and green trajectories (HR, OR) demon-
strate the stirring motion relative to the pan.

In this work, we focus on the interaction between hands
and objects, through their trajectories that encode motion
and positions, thus discriminating between different inter-
actions (Fig. 1). We propose an Interaction Reasoning
Network (IRN) that jointly reasons about interactions be-
tween both hands and active objects.

We propose encoders that learn hand-object and hand-
hand interactions and decoders that enrich this learned inter-
action with action representation knowledge. We automati-
cally detect hands and active objects, i.e. those with which
the hand interacts, using the approach from [27], and link
these detections over time to form trajectories with pooled
features from a spatio-temporal backbone. We then reason
about pairwise interactions, distinguishing left from right
hand interactions as well as global motion. The proposed
framework is trained end to end.
Our contributions: (i) this paper proposes to sepa-
rately reason about interactions between the left and right
hands with their corresponding objects in HOI through an
encoder-decoder transformer module; (ii) to the best of the
authors’ knowledge, the proposed method is the first work
that uses the trajectories of hands and objects to enrich the
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Figure 2. Proposed Architecture for Interaction Reasoning Network (IRN). A base 3D ConvNet extracts spatio-temporal features. These
are ROI pooled based on hand-object detections and combined with positional encoding to form trajectories. The trajectories are fed
into interaction unit to reason about hand-object relations. A decoder combines the action representation and two-hand encoders for
classification (Fig. 4 for details) . ◦ is for multiple outputs, ⊕ is for summation and C for concatenation. Dashed box for ‘Hand & Object
Detector’ highlights frozen weights. Thicker lines highlight backpropagation pathways.

relational representation of interactions for action recog-
nition; (iii) we showcase the importance of this proposed
reasoning on the large-scale egocentric HOI dataset EPIC-
KITCHENS-100 [6] as well as on the crowd-sourced HOI
dataset Something-Else [22].

2. Related Work

Action Recognition. In recent years, the success of deep
learning in computer vision has promoted the rapid devel-
opment of action recognition models. From the 2D Con-
vNets [38, 7, 34, 39, 20] and multi-stream networks [28,
9, 3] to 3D ConvNets [18, 31, 10, 8] and transformer-based
networks [23, 2], these models have progressively improved
the understanding of actions. Of relevance to our model,
SlowFast network [10] is a 3D convolutional model that
can combine the spatial features with temporal information
from two rates of sampling the input video. SlowFast re-
sults remain competitive particularly for HOI datasets we
analyse. These approaches form the base for interaction
reasoning which we review next.
Interaction Recognition. Recently, interest in actor-centric
video understanding employed increasingly reliable person
detectors, to localise actors in movies [16] or players in
sports [29]. As a branch of action recognition, interaction
reasoning has also received significant attention in recent
years. Many works [14, 4, 21, 33, 11, 12, 24, 37, 13, 22,
27, 40] utilise an object detector (e.g. Faster R-CNN [26])
to locate bounding boxes of human or objects for input into
a relational module. However, the detector is likely to yield
object proposals that are not relevant to the interaction due
to the lack of annotations for training. Instead, [14] learns to
predict the location of related objects based on the appear-
ance of actors. Similarly, [4, 11] introduce pairwise streams
for interaction patterns to encode the spatial relative loca-
tions of human and objects. Based on pairwise streams, hu-
man poses are considered for modelling HOIs in [21, 33].
Alternatively, Graph Convolutional Network (GCN) can ex-

plore image-based object interactions [40, 12].
Different from image-based methods, the motion is also

particularly important in video analysis. Given person de-
tections from the middle frame of a video, in [13], detec-
tions are pooled as a query to attend to the whole frame’s
3D features, in a transformer encoder block. Longer-term
reasoning is proposed in [37] by learning contextual infor-
mation through short-term person feature banks and long-
term feature banks from non-local blocks [35]. Apart from
the contextual interactions in the temporal dimension, [1]
studies relational interactions between objects via training
a Gate Recurrent Unit with pairing current and previous
frames. Similarly, [36] regards video as a graph of ob-
jects, conducting interaction recognition reasoning over the
graph. Moreover, [22] generalises the performance to un-
seen actions, decomposing each action into a verb, subject,
and one or more goals and proposing the Something-Else
dataset for exploring hand-object interactions. Detections
over time are combined through the Hungarian algorithm to
track the detected persons and objects. However, detected
objects may not be part of the interaction, which introduces
noise in all but the simplest scenes. Besides, expensive-
to-collect annotations of objects are required to train the
model.

Closest to our work, [25] proposes to focus on posi-
tions and sizes of interacting objects and learns an encoder-
decoder that attends to 3D action features. The proposed
CACNF [25] is trained on Something-Else dataset [22] and
it performs SoTA by ensembling a spatio-temporal model
and 3D CNN. Our proposed IRN is inspired by [1, 13], but
we focus on hands as actors, thus requiring to model two-
hand interactions including hand-to-hand interactions as
well as hand-to-object interactions. Different from [22, 25],
we do not require additional annotations and instead use
automatic, thus potentially noisy, detection of hands and ac-
tive objects to reason about interactions in busy scenes effi-
ciently. We detail our method next.
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Figure 3. Spatial Position Encoder. Detections, per object, over a
sequence are represented by binary maps. A 3-layer 3D ConvNet
produces per-frame spatial encoding.

3. Methodology
In this section, we give an overall of the Interaction Rea-

soning Network (IRN) architecture (visualised in Fig. 2).
We then discuss detections and the spatial position encoder
followed by details of our proposed interaction unit (IU).
3.1. Network Overview

IRN captures the relationships between interacting hands
and active (i.e. action-relevant) objects in HOIs. A base 3D
convolutional network is utilised to extract spatio-temporal
representations over the action. We utilise this in two ways.
First, similar to standard approaches, we pool the spatio-
temporal features for a global action representation F . Ad-
ditionally, we propose an interaction unit, where spatio-
temporal features are pooled within hand H and object
O detections along with their spatial positional represen-
tations P . We model interactions through i) encoders that
focus on hand-object and hand-hand interaction; and ii) de-
coders that enrich the action representation with the en-
coded hand interactions, trained jointly.

To get a better explanation of our proposal, we formulate
the interaction unit as:

E = e(H,O, P ;ωe),

I = d(F,E;ωd),
(1)

where ωe and ωd represent the parameters of encoders e()
and decoders d(). The encoder aims to model the hand H
and interacting object O representations along with their
spatial position encoding P . The encoders’ output, E, and
the pooled action representation F are fed into the decoders.

3.2. Detections and Positional Encoding

We use the hand-object detector [27] that aims to find
links between action performers (hands) and active objects
by optimising offset vector [14]. It not only detects left/right
hands and their active objects instead of segmenting all ob-
jects in one frame, but also yield directions and distances
between hands and contacted objects. We use a pretrained
hand and object detector [27] to predict hands and active
object detections per frame on EPIC-KITCHENS 100 [6].

We distinguish four bounding box detections of
{bHL

, bHR
, bOL

, bOR
} where H/O mean hand and object,

L/R denote the side, left or right. From these detections,
we extract frame-level hands and objects features. We adopt
a RoI average pooling that can extract the features based
on the output of the backbone as in [1, 13]. Given a layer
in the backbone with C channels, we extract a feature a
per detection of size RC by RoI pooling, of which we have
{aHL

, aHR
, aOL

, aOR
}.

In addition to the features, the absolute positions of
hands and objects offer significant information to distin-
guish interactions. We thus propose to use spatial po-
sitional representation p for each detection, such that
{pHL

, pHR
, pOL

, pOR
}. Inspired by [17], we consider a

binary map for each bounding box detection b, per frame.
These show the absolute position and scale of an object in
the image. We learn position (and scale) encodings from
this binary input and use the consecutive binary maps to
capture the positional/scale changes. In order to repre-
sent the absolute positions of objects, we design a weights-
shared spatial position Encoder (SPE), as shown in Fig. 3,
that consists of convolutions with zero-padding as in [17].
Distinctly, we use 3D convolutional layers with both spatial
and temporal zero paddings to learn local motion informa-
tion. The learnt encodings p ∈ RT×C are pooled on spatial
dimension only by a spatial global average pooling (GAP ).
Note that while we use local 3D convolution to model mo-
tion, we have the position encoding per frame to correspond
to the bounding box b.

As interactions focus on the temporal evolution of
the relationships between hands and objects, we com-
bine features and their positional encodings to form tra-
jectories. We use standard summation but also ablate
this against concatenation. For each hand, we represent
the trajectory H = (a1 + p1, · · · , aT + pT ) over T frames,
and similarly for objects. We thus have four trajectories
{HL, HR, OL, OR}, which form the input for our interac-
tion unit.

Note that one or more of these frames might be miss-
ing detections – when hands or objects are not present in
a frame or have not been detected. In this case the feature
a is set to 0 and the binary map is blank. We showcase
experimentally that our method can recover from missed
detections. Similarly, some trajectories might be missing
altogether. We consider the presence as well as the absence
of hands and objects as informative evidence for interaction
reasoning.

We next describe how we can reason about interactions
using these trajectories.

3.3. Interaction Unit
In order to reason about HOIs, we consider a pair of tra-

jectories (H , O) where H is the actor - a left/right hand and
O is the object with which the hand interacts. Importantly O
can be the other hand or an object. As Fig. 4 demonstrates,
we have up to 3 interactions per actor/hand. For the left
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Figure 4. The Architecture of proposed Interaction Unit (IU). This module includes encoders and decoders. Encoders reason about hand-
object interactions by multi-head transformers with hands as query and objects as key and value. Encoders outputs from left and right
hands are concatenated and fed to decoders. Decoders model the interaction with action representation.

hand, these would be (HL, OL), (HL, OR) and (HL, HR).
We intuitively describe what these capture using the exam-
ple from Fig. 1 on stirring food in the pan.

• (HL, OL) captures the left hand holding the pan. The
hand gesture and relative positions of hand and pan
would be captured using this interaction.

• (HL, OR) captures the left hand versus the spoon as it
stirs through the food in the pan. Note that the spoon
is not directly interacting with the left hand.

• (HL, HR) captures the absolute positions and gestures
of both hands as one holds the pan and the other stirs
the food.

We first describe our interaction encoders. These are
concatenated and their output is passed to stacked decoders
described after.
Interaction Encoder. We introduce query Q, key K and
value V which are projections by three different linear maps
(q, k and v, respectively). We explain the encoder for one
interaction pair namely (HL, OL).

QHL,OL
= q(HL),

KHL,OL
= k(OL),

VHL,OL
= v(OL),

(2)

where q, k, v all linearly project RT×C input to RN . Fig. 4
shows the module of left-hand interactions. The encoder is

We keep the terms from [32] for consistency

then a residual attention unit:

E
′

HL,OL
= σ

(
QHL,OL

KHL,OL√
N

)
VHL,OL

+QHL,OL
,

(3)
where E

′

HL,OL
is preliminary interaction representation be-

tween actor HL and object OL and σ is the softmax oper-
ator. Following [32], we also add a linear feedforward net-
work FFN() to reason about the interaction E

′′

HL,OL
based

on preliminary one E
′

HL,OL
:

E
′′

HL,OL
= δ(FFN(E

′

HL,OL
)) + E

′

HL,OL
, (4)

where δ is the dropout operation and E
′′

HL
, OL ∈ RN is the

encoded representation for (HL, OL).
Similarly, E

′′

HL,OR
and E

′′

HL,HR
are computed for the

left hand (see Fig. 4) as well as three encoders for
E

′′

HR
. We concatenate all outputs to form overall encoding

E
′′ ∈ R6N . Subsequently, the dimension of E is reduced

from 6N to M. We set M to the size of action representation
F by a linear projection to simplify our decoder.
Interaction Decoders. Having reasoned about all pairwise
interactions using the encoder, we use E to enrich the action
representation, as in [13]. The pipeline of the decoder is
similar to the encoder. Specifically, the features E from
the encoder is projected to key K

′ ∈ RM and value V
′ ∈

RM . We use the action representation features F ∈ RM

pooled on temporal dimension as query, and directly map
F linearly to Q

′ ∈ RM . Similarly, we adopt dropout, a



feedforward network as well as residual connections, like
in Eq. 4, to learn decoder’s output I ∈ RM .

At last, we stack the multi-head interaction encoders and
decoders. The output I is fed to a fully connected layer,
and trained to classify actions using standard cross entropy
loss. During training, we backpropagate through all compo-
nents of the IRN including IU and SPE, as well as the base
network. The weights of the detector remain frozen.

4. Experiments and Results
In this section, we experimentally evaluate the model on

two datasets featuring hand-object interactions from ego-
centric and crowd sourced videos respectively.
4.1. Datasets and Implementation Details

EPIC-KITCHENS-100 [6] is the largest video dataset in
egocentric vision. We report on the full dataset but the con-
duct ablation study on a subset of the validation set. The
subset was collected by the first participant (P01) and con-
tains 5,509 / 885 action segments for the training and val-
idation set, respectively. We use a fixed random seed and
a single run during ablations to ensure results are directly
comparable.
Something-Else [22] is based on [15] proposing a new split
for novel verb-noun combinations in the test set. Active
objects have been densely annotated for training by [22] –
however hands are not annotated for side L/R and accord-
ingly the active objects are not associated with a hand. We
use this proposed split without the spatial annotations, in-
stead using automatic, potentially noisy, detections.
Evaluation We use evaluation metrics proposed for both
dataset - Top-1/5 accuracy for verb, noun and action classes.
For Something-Else, we use a single output classifier.
Implementation Details. The hand-object detector [27]
aims to find links between hands and interacting objects
by optimising an offset vector. It was trained on 100 days
dataset, also proposed in [27], that contains both first-person
and third-person videos. We use the publicly available
trained weights, and detect frame-level hands and objects
with the confidence threshold of 0.5. Note, if hands or ob-
jects failed to be detected, we set these detections to 0.

We use SlowFast [10] R-50 8×8 due to its performance
on both datasets. The input videos are 32-frame clips, where
we sample T = 8 frames with a temporal stride τ = 8
for the slow pathway, and 32 frames for the fast pathway.
We pool hands and objects features C = 640 based on the
third block of SlowFast as when the layer goes deeper, the
features get sparser. We set N = 5120 used in the encoder
and M = 2304 so that it matches the the globally pooled
feature size of the last block of SlowFast. For the interaction
unit, 16 heads are used in the multi-head attention and 3-
layer encoders and decoders are implemented.

For EPIC-KITCHENS-100, the backbone is pre-trained
on the training set and e() and d() are trained from ran-

(a) input (b) STD (c) SCR

Figure 5. Visualisation of STD and SCR for data augmentation.
The action is “take plate”.

dom initialisation. We train for 24 epochs with learning
rate 0.001 using SGD with 0.0001 weight decay and 0.9
momentum, the learning rate is decayed by the factor of 10
at epochs 10 and 20. For Something-Else the backbone is
pretrained on Kinetics-400 [19]. Similarly, the network was
optimised by SGD with initial learning rate 0.01 dropped at
epochs 12 and 18, 0.0001 weight decay, 0.9 momentum for
20 epochs.

It is important to note that we changed the random crop-
ping typically used for data augmentation. This is because
randomly cropping the image in EPIC-KITCHENS-100 re-
sults in hands and objects being frequently cropped out of
the main frame. As we show in Fig. 5, the standard STD
crops the right hand and plate out. This significantly harms
the interaction unit. In egocentric footage, hands can be
in the bottom half of the image or towards a corner. To
avoid this while maintaining the power of augmentation, we
first randomly scale (S) frames to H ′ × W ′, then crop (C)
frames to H ′ ×H ′ and finally resize (R) frames to the tar-
get resolution 224 × 224. We refer to this augmentation
approach as SCR, which we use in all our experiments on
EPIC-KITCHENS-100. The two data augmentations per-
form comparably on Something-Else dataset as the action
is typically at the centre of the image. We thus use the stan-
dard random cropping data augmentation for this dataset.

4.2. Something-Else Dataset Results

Tab. 1 shows the performance of our method outperforms
SoTA reasoning approaches STIN, STRG and CAF. Specif-
ically, we outperform STIN Combined with I3D, when
trained jointly or separately. Notably, our class-agnostic
IRN is superior to methods using object labels among non-
ensemble models. We also report ensemble methods. These
metods are not directly comparable but our model remains
competitive.

Importantly, we showcase that our model particularly
benefits from the usage of a SlowFast backbone. We evalu-
ate our interaction units with different backbones in Tab. 2.
We get the best performance when combining SlowFast
as a base network with our interaction unit, but also re-
port improvement when using the I3D backbone. In the
Something-Else dataset, we find that only 39.63% of clips
have both left and right hands, while 50.11% and 10.26%
of clips have only one hand or no hands respectively. When



Method Ens. Obj. Top-1 Top-5
STIN [22] ✗ ✓ 37.2 62.4

I3D+STIN [22] ✗ ✓ 48.2 72.6
CAF [25] ✗ ✓ 52.3 78.9

STRG [36] ✗ ✗ 52.3 78.3
IRN (Ours) ✗ ✗ 52.9 80.8

I3D-STIN [22] ✓ ✓ 51.5 77.1
STRG-STIN [22] ✓ ✓ 56.2 81.3

CACNF [25] ✓ ✓ 56.9 82.5
Table 1. Results on Something-Else Datasets. +: jointly trained.
-: trained separately. Ens.: Ensemble. Obj.: use manual object
labels.

I3D SlowFast IRN Top-1 Top-5
✓ 46.8 72.2
✓ ✓ 47.5 73.8

✓ 52.2 80.3
✓ ✓ 52.9 80.8

Table 2. Results of different backbones on Something-Else.

no actor/hand is detected, our interaction unit is likely to
struggle. Despite this, our proposed method can enrich the
representation for interaction reasoning.

4.3. EPIC-KITCHENS-100 Dataset Results

As this dataset is egocentric, i.e. participants are using a
wearable camera, more actions involve both hands making
it more suitable to assess our proposal. To manage the size,
we conduct an ablation on a selected subset.
Interaction Components. To evaluate the contribution of
the various encoding interactions, we ablate the results by
removing one at a time, as well as left/right hand encoders
in Tab. 3. We first note that removing right hand inter-
action encoders (row 6) results in a larger drop than left
hand (row 2). This is anticipated with most participants be-
ing right-handed. Similarly, the largest drop is associated
with removing the encoder of HR, OR, which is critical
for one-handed interactions (row 7) followed by HR, HL

(row 9) which is critical for hand-only interactions (e.g.
wash hands). The encoder with the least contribution is that
for HR, OL (row 8), as it is probably compensated by the
other pairwise encoders.
Trajectory. We evaluate the importance of using trajecto-
ries. Previous work [13] only uses one actor (person) of
the middle frame (middle) along with video action rep-
resentation and a recent work [24] detects persons in the
middle frame and then duplicate these detections across
time (duplicate). We compare these options to our pro-
posed approach that encodes object trajectories as well as
two-handed interactions. The best performance is achieved
when using the complete trajectory of detections, including
both hands and objects.
Spatial Positional Encoding. We adopt two ways to fuse
positional information with visual features of hands or ob-

We’ll make the subset available for direct comparisons

(HL,OL) (HL,OR) (HL,HR) (HR,OR) (HR,OL) (HR,HL) Top-1
✗ ✗ ✗ ✗ ✗ ✗ 42.37
✗ ✗ ✗ ✓ ✓ ✓ 43.28
✗ ✓ ✓ ✓ ✓ ✓ 42.60
✓ ✗ ✓ ✓ ✓ ✓ 43.28
✓ ✓ ✗ ✓ ✓ ✓ 42.94
✓ ✓ ✓ ✗ ✗ ✗ 42.82
✓ ✓ ✓ ✗ ✓ ✓ 41.47
✓ ✓ ✓ ✓ ✗ ✓ 44.07
✓ ✓ ✓ ✓ ✓ ✗ 41.69
✓ ✓ ✓ ✓ ✓ ✓ 44.52

Table 3. Ablation study for Interaction Components.

Det. HR Act. Rep. HL Objects Top-1
middle [13] ✓ ✓ 43.05

duplicate [24] ✓ ✓ 44.07
trajectory ✓ ✓ 42.37
trajectory ✓ ✓ ✓ 43.28
trajectory ✓ ✓ ✓ ✓ 44.52

Table 4. Comparison to prior works without trajectory representa-
tions as well as active object trajectories.

SPE Top-1
none 43.39
concat 42.71
sum 44.52

Table 5. Ablation study for
Spatial Position Encoding.

Act.Rep. Top-1
none 31.98
concat 43.73
decoder 44.52

Table 6. Ablation study for
Action Representation.

Top-1 Accuracy (%)
Method DataAug. Verb Noun Act.

Chance [6] STD 10.42 1.70 0.51
IRN (Ours) STD 60.94 43.97 31.97

TSN [6] STD 60.18 46.03 33.19
SlowFast [6] SCR 63.64 48.58 36.76
IRN (Ours) SCR 63.68 48.94 37.11

Table 7. Quantitative results on full Validation set of EPIC-
KITCHEN-100. STD and SCR denote standard and our data aug-
mentation strategies.

jects. As we expected in Tab. 5, spatial position encoding
SPE improves the performance. Compared to the network
without SPE (none in Tab. 5) or concatenations of SPE.
This is due to the sparsity of positional features. Concate-
nating lots of zeros to the visual features may introduce
noise. Our proposed approach to sum the positional en-
coding yields the best action performance.
Action Representation. In this ablation study, we evalu-
ate the importance of globally pooled action representation.
First, We remove decoders and train the network with only
interaction features, i.e. none. Tab. 6 shows that results
drop significantly if the network does not use the globally-
pooled action representation. We also concatenate the hand-
object interaction features with action representation, in a
late-fusion fashion. What stands out in the Tab. 6 is that the
Top-1 action result of the decoder surpasses concatenation.

We next report results on the full validation set of EPIC-
KITCHENS-100. In Tab. 7, our method IRN improves
over baselines. Adding the interaction unit to SlowFast im-
proves results for verb, noun and action top-1 accuracy by
0.04%, 0.36% and 0.35%, respectively. Comparing row 2
and row 5, we demonstrate that the random cropping of



Figure 6. Qualitative results of correctly-recognised interactions from EPIC-KITCHENS-100 (col 1) and Something-Else (col 2). L/R
indicate the side and H/O denote hands and objects. GT and Pred are Ground Truth and Prediction.

Figure 7. Failure cases of Something-Else (row 1) and EPIC-KITCHENS-100 (rows 2, 3).

STD harms the performance of IRN.

4.4. Qualitative Results
We demonstrate the results on clips containing only one

hand or both hands in Fig. 6. It illustrates correct action
recognition examples from both datasets. It is also im-
portant to highlight that our method recovers from partial
failures in automatic detections of hands and objects, as
in rows 3 and 4. IRN is robust to two types of detection
errors: (a) incorrect active objects detection; (b) incorrect

side of hand and objects. Specifically, row 3 illustrates
“chop onion” and “pull two ends of something so that it
gets stretched”. The onion is not detected in several frames
due to occlusion. Similarly. the knife and rubber are missed
in several frames along the trajectory. For row 4 (col 1)
the drawer switches between being a left-object (OL) and
a right object (OR), while in row 4 (col 2) the hand sides
are swapped in various frames. Both errors (a) and (b) have
little impact on our method, due to our usage of trajectories
and the attention mechanism that selects the relevant hand



and object representations to reason about interactions.
Moreover, we show failure cases in Fig. 7. The main rea-

son for failure is undetected or unobserved hands through-
out the videos (row 1). In both examples, the hands are not
visible throughout. Row 2 (col 1) shows that our focus on
both hands might result in detecting another concurrent ac-
tion, paying more attention to the object in the other hand
(salt). In row 2 (col 2) the method fails to recognise the in-
teraction with small movement. In row 3, the less frequent
action of replacing the bin bag is incorrectly mistaken as the
frequent throwing action. A clear limitation of our approach
is evident in row 3 (col 2) where the person is checking
the time on their hand watch. Evidently, the watch is never
recognised as the interacting object, as it is always part of
the hand detection.

5. Conclusion
In this paper, we present a framework for hand-object in-

teraction reasoning that separately attends to actors (hands)
and interacting objects, through encoders, as well as ac-
tion representation which includes contextual information
through a decoder. We present results on two hand-object
interaction datasets, demonstrating generality and competi-
tive performance, with an ablation study.
Acknowledgements. This work used public datasets and is sup-
ported by EPSRC UMPIRE (EP/T004991/1).
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